Bayesian reconstructions from emission tomography data using a modified EM algorithm
نویسندگان
چکیده
منابع مشابه
Bayesian reconstructions from emission tomography data using a modified EM algorithm.
A novel method of reconstruction from single-photon emission computerized tomography data is proposed. This method builds on the expectation-maximization (EM) approach to maximum likelihood reconstruction from emission tomography data, but aims instead at maximum posterior probability estimation, which takes account of prior belief about smoothness in the isotope concentration. A novel modifica...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملModified Bayesian Algorithm in Data Mining
Document Annotation is the task of adding metadata information in the document which is useful in information extraction. Document annotation has emerged as a different stream in data mining. Majority of algorithms are concentrated on query workload. This paper uses Probing algorithm with Bayesian approach which identifies the attribute based on query workload, text frequency and content of the...
متن کاملFast Globally Convergent Reconstruction in Emission Tomography Using COSEM, an Incremental EM Algorithm
We present globally convergent incremental EM algorithms for reconstruction in emission tomography, COSEMML for maximum likelihood and COSEM-MAP for maximum a posteriori reconstruction. The COSEM (Complete data Ordered Subsets Expectation Maximization) algorithms use ordered subsets (OS) for fast convergence, but unlike other globally convergent OS-based ML and MAP algorithms such as RAMLA (Bro...
متن کاملThe Bayesian Structural EM Algorithm
In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete data—that is, in the presence of missing values or hidden variables. In a recent paper, I introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 1990
ISSN: 0278-0062
DOI: 10.1109/42.52985